高密市木糖醇

微信扫一扫,分享到朋友圈

高密市木糖醇

高密市木糖醇
将50g橙皮素加到250mL10%的氢氧化钾溶液中,室温放置30min后用10%的 钯-碳催化剂(4g)催化氢化1.5h。原料可用粗制的或直接市购的橙皮素,但以 重结晶的为好。将混合物过滤,用盐酸调节至PH7.0后,将溶液用水稀释至 600mL,加人5mL36%的浓盐酸溶液,然后快速加热至沸腾,回流2.5-2*75h。混 合物中HDG (DI)和橙皮素二氢查耳酮的比例大约为1:1。油状的反应混合物冷 却后可用4xl00mL的醚抽提,蒸发后得橙皮素二氢查耳酮16g (熔点1981)。 提取余液(带有一定的油牲)罝于冰箱中可得到纯净的橙皮素二氢查耳 酮-D-葡萄糖苷(II) 10. 3g,再用31%的乙酸乙酯抽提水溶性滤液, 可得1.5gHDG。HDG的甲醇结晶体呈无色针状,熔点119 - 121T:。用a - L -鼠 李糖苷酶水解除去鼠李糖后得率更髙,但不太方便。
在双酶-化学联合法合成三氣蔗糖中,最值得关注的是优化G- 6 - a的发 酵条件以及改善糖和糖酯的分离技术,这将有助于提高该法的效率,因此,需要 对G-6 - a形成过程中的生物化学和生理学机制进行详细的研究以简化该操作。 而快速分析、良好的反应控制以及适时地终止反应,也是双酶-化学联合法合成 三氣庶糖所必需的。同时,以蔗糖为原料经微生物发酵作用,直接生成S-6-a 的方法相当诱人,在这方面值得花大力气加以研究。
二肽系列化合物的结构与甜小的R,基团更合适。有趣的是,在手性中心含两个甲基的同型物[7]仍具有明 显的甜味,这表明“前-L” (Pm-L)型甲基的重要影响并未被第二个甲基所 消除。在氮原子上的甲基取代或使甲基移至碳原子上将导致甜味的丧失。R2 基团经常"了以变化,如用呋喃基[10]和环己基[11]来取代,也可用碳原子 数在5个以内的简单无环烷基来取代([12]-[丨4])。
此毒理学试验包括频繁的行为观察、体检和神经检查。试验对用在两代 试验中的动物进行了学习、光反射和惊跳反应等特殊的神经系统检测,对所 有的脑组织和外周神经都进行显微镜检查。试验表明,在使用剂萤数千倍于 90%的预测人体消耗摄的纽甜,并没有显示对这些指标有影响。同位素跟踪 标记法检测纽甜在大鼠体内的分布发现在脑和中枢神经系统内的剂童很低。 在大鼠、小鼠和狗所做毒理学试验中,采用了一系列的指标用来评价潜在的 免疫毒性。纽甜对白细胞记数(包括分类、总蛋白、白蛋白、血浆白蛋白/ 总蛋内的比例),以及脾和胸腺的重量都没有影响。睥、淋巴结、胸腺、与 肠道有关的淋巴组织和骨髓等在宏观和微观检查中都未发现异常。因此,即 便在动物的生命周期内给予极大剂量的纽甜也没有发现有神经毒性和免疫毒 性的证据。
1.奇异果素的二聚体模型
大了它的应用范围。当阿斯巴甜与碳水化合物彻甜味剂(如蔗糖、果糖或葡 萄糖)混合时,产品能量下降不少而甜味却没有变化。当阿斯巴甜与强力甜 味剂(如糖精、甜蜜素、安赛蜜或甜菊糖)混合使用时,产品有时略带有苦 涩味,这可通过加大混合物中阿斯巴甜的比例来改善,改善程度随阿斯巴甜的 比例增大而增大。混合甜味剂协同增效作用与各组成甜味剂所占的比例及食品 配料系统有关。
值得注意的是,三氣蔗糖-3,, 4#-环氧化物是不甜的。由于环氧化作用所 导致的呋喃环构象形变,并不足以抵消三氣蔗糖和受体模型之间的色散作用,这 就意味着果糖基的3#-oVl是构成甜味AHs/BJ、t的必需部分。同样,2,r-二 氧-2,1'-二脱氧-甘餌蔗糖也不甜,说明葡糖基的2-OH也是蔗糖衍生物甜 味所必脔的。
甜味特性也较母体化合物好。 图4 _ 36 R^busoside的
基因植物表达Brazzein。随着生物技术的发展,现在研究人员可以用X射线衍 射、氨基酸测序和计算机分析等手段分析甜味蛋白的结构与构型,进行蛋白质全 新设计;也可以运用基W操作方法从植物中分离甜味蛋白的(:dna或运用遗传学 原理,根据氨基酸序列人工合成基因,再利用基因工程技术将Brazzein基W转人 微生物或者髙等植物中表达。
这样,生甜团中的AH、B就不仅仅局限在氢供体和氢受体范围,而是扩展 到所有能接受未共用电子对的电子受体和所有能给出未共用电子对的电子供体都 可以作为生甜团中的氢供体和氢受体,从而使甜味三角理论中AH、B基团的适 用范围大大拓宽。所以,在三乙酸或三硝酸甘油酯中,酮基上的C原子和硝基 中的N原子就可以以Lewis酸的形式通过接受未共用电子对而分别充当两个甜味 分子生甜团中的A。

展开阅读全文
本站部分文章来自网络,不代表立场及观点,转载请注明出处,如有侵权请联系即删除。 广告合作事宜,请联系:133 2802 0789(微信同号)

你也可能喜欢

评论已经被关闭。

插入图片
微信 微信
微信
电话 电话
13328020789
返回顶部