天桥区阿力甜
在Ames试验中(沙门氏试验菌种为 TA98、TA100、TA1535、TA1538)和哺乳动 物细胞(中国仓鼠)的试验中,都未发现有 遗传畸变现象。观察中国仓鼠染色体的畸变或阁安#炎的工艺流程简图 用45~4500<1^体宽的剂童对小鼠的细胞核进行试验,都未见到畸变现象。另外 小鼠的纤维细胞研究,也没冇发现恶性变化,也不与DNA结合,对肝、胆也不产 生不良影响。这些遗传学毒理试验均表明,安赛蜜对遗传不产生毒性作用。
棉籽糖是蔗糖分子的Glc (葡萄糖)一侧再接上一个Gal (半乳糖),是 —种三糖分子。由于棉籽糖的Gal基正好位于蔗糖C-6位,充当着C-6的 天然保护基团。因此,本方法是以棉籽糖为原料,直接进行选择性氣化制得
半乳糖苷酶水解TCR的速率,通常为水解棉籽糖的丨/ (50 ~ 100)。产 物抑制是一个可能的原因,因为半乳糖苷酶常常会受到半乳糖的抑制。另一 个原因可能是,由于自由的C -6位羟基对底物与酶活性部位的高效结合是必窬 的。酶活力降低的原因还可能是由于,位于糖苷键附近的f-Cl会阻碍酶的水 解作用。
化学法合成阿斯巴甜,一般包括以下5个步骤:
奇异果素还有风味增效特性,与其甜味增强特性一样受人重视,特别是应用 在口香糖、口腔清洁制品时更是如此。许多氨基酸类型的化合物,大多可产生风 味增效作用,比较常见的有:①单一氨基酸(谷氨酸钠);②二肽(阿斯巴 甜);③蛋白质(嗦吗甜);④糖蛋白(奇异果素)。如何合理解释包含在这些 化合物分子中的风味增效机理,尚待人们的继续探索。
Heijden等人根据旁链长度对甜度的影响,描绘出二肽键合位置的AH - B - X 甜味三角形,并确定了其近似的尺度。通过比较二肽与硝基苯胺、蔗糖的甜味三角 形键合尺度,可知二肽分子中与疏水键合位的距离最大(图2-81〉
如果Thaumalococus果实尚未完全成熟就被摘下,甜蛋內的进一步生成还会 持续好几天,即使果实已经完全与植物相分开,此时如果用具有放射活性的二氧 化碳(l4co2)气体来进一步熟化这种未成熟的果实,那果实中所生成的甜蛋白 也有[14c]标记。该研究淸楚表明甜蛋A嗦吗甜的生成主要是通过假种皮,这 就为遗传控制提供了一个理想的机会。遗传控制的目的在于利用另一宿主来产生 嗦吗甜,全世界有两个单位较早进行这方面的研究:一是位于大不列颠坎特伯?雷 市(Canterbury)的Kent大学,另一个是位于荷兰Vlaardingen的Unilever研究室 中的微生物与有机化学研究组。
美国一般根据一项14d的关于阿斯巴甜的消费量的详细调查资料,以及在饮 料中纽甜和阿斯巴甜甜度的比较(保守估计为31倍),来确定纽甜的使用量。 饮料是阿斯巴甜和纽甜所期望的主要使用范畴,而更为安全的一种预测纽甜消费 量的设想是用它来取代膳食中所有的阿斯巴甜。基于这些假设,美国食品与药物 管理局估计所有消费者中,预测纽甜的平均和90%的每日消耗最分别是0. 04和 0. 10mg/kg体重。因各国膳食模式的不同,在澳大利亚和新西兰,纽甜的预测每 日平均消耗萤分别是0. 02和0. 01 mg/kg体重,分别焙可接受每日摄入量的1% 和0.5%,纽甜的95%预测摄入萤分别为0.112和0.05111&^8体觅,相当于可接 受的每日摄人量的5. 6%和2. 5%。
美国Natural Research Ingredients公司,正准备向美国FDA申请Brazzein的_ 批,为Brazzein的商业化生产作准备。