覃塘区麦芽糖醇
6'-CH2 (Xs8),后者与两个疏水部位构成生甜团,分别为r-CH2 (Xs4)和 6-CH2 (Xs5)。这种多敢疏水作用导致蔗糖分子与受体不同侧链形成色散键, 从而使甜味增强。生甜团三合体(AHs/Bs/Xs4、AHs/Bs/Xs5、AHs/Ba/Xs8)的 分子构象,与预期的顺时针方向一致。使用髙度亲油性氣原子,取代蔗糖分子葡 糖基和果糖基上特殊位置的羟基,这些特殊位置包括C-4、c-r、C-V和 C-6\而不取代6-OH基团,可以使蔗糖甜味明显增强。表3-18所示为三氣 蔗糖及其衍生物与受体蛋白的作用部位。
安赛密不与食品中的任何成分或配料发生化学反应,即使存放一段时间,也 没有任何变化。大多数微生物对安赛蜜也无作用,不会被这类微生物用去代谢, 只有某些放线菌如诺卡菌(—iasp.),能够降解安赛蜜。
关于糖精钠中钠离子的作用,目前还没弄清楚。有一份研究表明,糖精钠的 活性较其他形式的糖精来得大,此外,还发现摄人与糖精钠一样数量的糖精酸 后,并没有膀胱肿瘤病变发生。
白云参(Phbmis beumicoides)生长在我国云南、四川和两藏等地,系唇形 科(Labiatae)多年生草本植物。1983年,日本Tanaka等人首先用丁醇从该植 物中分离提取出两种双萜糖苷——Baiyunoside和Phlomisoside I,它们的化学结 构如图4-39所示。
从各种精神物理学数据可推测认为,甜味刺激是一种有序的不可逆历程,如 图1-26机理3所示。如果有序排列确按图上标明的方式存在的话,则其本质 包括:
如果Thaumalococus果实尚未完全成熟就被摘下,甜蛋內的进一步生成还会 持续好几天,即使果实已经完全与植物相分开,此时如果用具有放射活性的二氧 化碳(l4co2)气体来进一步熟化这种未成熟的果实,那果实中所生成的甜蛋白 也有[14c]标记。该研究淸楚表明甜蛋A嗦吗甜的生成主要是通过假种皮,这 就为遗传控制提供了一个理想的机会。遗传控制的目的在于利用另一宿主来产生 嗦吗甜,全世界有两个单位较早进行这方面的研究:一是位于大不列颠坎特伯?雷 市(Canterbury)的Kent大学,另一个是位于荷兰Vlaardingen的Unilever研究室 中的微生物与有机化学研究组。
目前有人假定每个离子通道都配备一个 “有序队列”作为使刺激物分子靠近的惟一 工具,它足以说明靠近离子通道的刺激物浓 度集中并向神经原有组织输送的原因,也能 说明当刺激物分子从队列前部位向离子载体 转移时发生“极化”作用或顺序定位 (alignment)的原因。图丨-28所示为主观强 度与时间的关系曲线,从中可观察到一个显 著的强度最大值平稳冈域,可解释为有序队 列的排空时间。图1 -27中在持续时间Op)
旋= 1:12. 5,w/w)溶解时,可以尽可能地避免在反应过程中产生蔗糖脱氧环化 衍生物。因此,本研究仅以蔗糖和乙酸酐的摩尔比、反应温度和反应时间等三个 因素,分别对S-6-a的合成条件进行优化,结果如图3-29至图3-31所示。图3 -29蔗糖和乙酸酐摩尔比对取酯化反应效果的影响(-丨8*C、7h)图3-30反应温度对单酯化反应效果的影响[蔗糖:乙酸酐=0.95 (mol/mol), 7h]时 N/h围3-31反应时间对单酯化反应效果的影响[蔗糖:乙酸酐=0.95 (mol/mol),25 *C]
一般成年人的味莆数约有9000个,而婴儿的味蕾 数可能要超过1万个。人的味受体即位于舌表面 味莆尖端的小孔道内,由手指形的微绒毛 (O^ji.mxZOpLm)组成D味细胞的其余表面全为 扁平而不与外界通透的沟状细胞包裹,故受体的 微绒毛只有通过味莆尖端小孔道才能与口中唾液 接触。因此味刺激分子必须具有一定的水溶性,才能随唾液流入味莆孔穴中,吸附于受体膜表面 上而产生味感。
发现比较晚的Brazzein由于具有耐热性,而且甜味高,因而有望大规模生 产。美国Kelcakr Worldwide公司已经可以利用含有Brazzein基因的玉米生产 Brazzein,据称丨I重组玉米中可以提取1 kg的Brazzein,但迄今为止还没有这方面 的确切报道。
覃塘区麦芽糖醇
展开阅读全文