共青城市罗汉果苷

微信扫一扫,分享到朋友圈

共青城市罗汉果苷

共青城市罗汉果苷
提纯得到的嗦吗甜在各水平的RIA分析中均未进行交叉反应,也没有甜味, 这表明胞内嗦吗甜不会在细胞质中折费成甜味构型。
经典的合成法使用/V, AT-二环己基羰化二酰亚胺之类试剂,使A’-苄氧羰 基-(办-苄基)-L -天冬氨酸与L -苯丙氨酸甲酯缩合成AT -苄氧羰 基-(办-苄基)-L-天冬氨酰-L-苯丙氨酸甲酯,然后使用钯(Pb)催化剂 催化还原成阿斯巴甜。这种方法将天冬氨酸的谷-羧基保护起来,以避免生成阿斯 巴甜的异构体。这样,就可实现专一性的缩合反应合成a-Asp-PheOMe (阿 斯巴甜)。然而,该法不适宜于工业化规模使用,因为所用的缩合试剂价格很高, 在经济上不合箅,而且,天冬氨酸羧基的选择性酯化也较难进行。图2-17 所示为该法的合成路线。图2-丨7以苄氧羰某-(/3-苄基)-L-天冬氨酰作为天冬氨酸 衍生物的阿斯巴甜合成路线
糖精,学名为邻磺苯甲酰亚胺(sulfobenzic acid imide),分子式C7H503NS, 相对分子质里183. 18,结构式如图6-1所示。它为无色或白色的结晶或粉末, 其钠盐为水溶性。市俦糖楮实际是糖精钠,也可以制成钙盐,至于铵盐或其他的 糖精盐则用途有限。
甜叶菊原产地的人们将这种植物添加于茶叶中以增加其甜度,这是甜菊苷最 初的用途。近些年来,由于大规模的商业化生产以及安全毒理方面详细的研究结 果,使得这种天然甜味剂在工业上的应用日趋广泛。
O.Olmol/L的乙酸盐缓冲液。试验结果证实了甘草甜素有抑制牙斑形成的作用, 但其抑制效果与时间有关,随荇时间的延长,甘草甜素对牙斑形成的抑制效果更 为明显。
阁5 - 8各质粒转化体嗦吗甜生产的时间-产铍图 (1>、(2)为嗦叫甜产ft; ?,TCDTh-4;參,TB2bl-44; ★, TCP-3;
天冬氨酰-D-丙氨酸酯化合物的结构与甜度注:括号内数值为相对于9%蔗糖液的甜度,其余的为阈值对比。美国通用食品公司除了早先登记的数种氨基醇、L-丝氨酸酯和D-丙氨酸 酯等专利外,后来又申请了很多关于甜二肽化合物的专利,如图2-76的新型烯 烃化合物[110]及其相应的烷烃化合物。在这里,烯烃化合物的反式双键可认 为是一种电子等排的酰胺(具有相同的大小与形状酰胺和经后向旋转的酰胺[111]均属于上面已讨论过的二肽化合物(表2-51和表2-42),它们的R,、 1^2和K3得以明确的优化。
DMBA是制备NTM的关键原料,合成方法有三种:(1)将3,3-二甲基丁醇在CuO的催化下氧化而得;(2)1, 1-二氣-3,3-二甲基丁烷在高溫下水解而得;(3)丨-氯-3,3-二甲基丁烷用二甲基亚砜氧化而得。
化合物[102]是由氨基丙二酸二酯经稳定化处理制得的,即用电子等排的 /V-甲基-酰胺取代不稳定的甲酯。但这样一来甜度损失很大,于是不得不考虑 改用其他简单的基团来模拟酯基团的重要结构特征,最后选择了一些通过叩2轨 道中心的平面型基团(如三个取代基的3-C原子均在一个平面上)。依据这种 选择制备的D, L-呋喃基甘氨酸(+) 葑基酯[103](表2-53),这种 非对映体混合物的甜度要大大高于相应的/V-甲基-酰胺[102]。进一步研究 制得的苯基甘氨酸酯和其他杂环甘氨酸酯[104] ~ [106],它们的甜度也非常 大,特别是(-)或(+)-々-葑基酯化合物。苯基团和杂芳烃基团要 比通常的“上面”基团K,大,其中平面芳香烃基团在甜二肽结构上似乎起重要 的作用。例如,呋喃甘氨酸酯[103]经还原而得的四氢呋喃甘氨酸酯[107], 其甜度大为下降。
示。由此推测,甜味分子的疏水部位既不是固定的疏水基团,也不是一成不变的。 为了验证这-推测,人们猜测增加蔗糖果糖基部分的疏水性,将有助于它和甜受体 的结合,从而靖强甜味。表3-17所收集到的相关卤代蔗糖的甜度数据,支持了这 种猜测,因为氣取代果糖基上的C-r、C-4'和/或C-6涖羟基,均导致蔗糖衍 生物甜度的增加。

展开阅读全文
本站部分文章来自网络,不代表立场及观点,转载请注明出处,如有侵权请联系即删除。 广告合作事宜,请联系:133 2802 0789(微信同号)

你也可能喜欢

评论已经被关闭。

插入图片
微信 微信
微信
电话 电话
13328020789
返回顶部