道孚县乳糖醇
根据R,和R2基团的酯基和烷基能够互 相罝换这一事实,可认为在这两个位罝上与 甜受体之间的相互作用,与其说是静电吸引 作用还不如说是大小和形状的相互配合。当 &和R2都是疏水性基团且R,小于&时,所 生成的天冬酰胺(图2-73 in)具有 甜味。
他们通过CLUSPRO wel> server获得了奇异果素的四聚体模型。二聚体的定 位方式总结起来有两种:--种形成球形四聚体结构;另一种形成线形四聚体结 构,两种定位方式都与可以兼容糖链的存在。两种四聚体模型在组氨酸的位置、 组氨酸的外露情况和带电表面这些方面的性质都与单独的二聚体的一致,糖链并 不会引起位阻现象。在球形结构中,两二聚体之间会形成4个H键,并且每个 亚基都有46个残基位于分界面。而在线形结构中,两二聚体之间仅存在1个H 键,位于分界面的残基数儿乎为球状结构中的一半。球形和线形结构可能就分别 代表奇异果素四聚体的“合”和“开”两种形式。
表2 -27 纽甜晶体X -射线衍射特征峰值表2-28 各种晶型在70^:的稳定性
图1 -29代谢塑受体质体活性位点与配体的结合方式Temussi等人所描述的模型阐明了甜味受体的两个原体的作用。由于T1R3 是甜味受体和鲜味受体所共有的,因此,人们很自然地就会把特异性的来源接至 活化的主要作用分别归结于两个受体的T1R2原体和T1R1原体。蛋白质的楔形 假设已经表明,T1R3在蛋白质与受体外部结合部位结合中起主要作用。随后, Morini等制作的详尽的逑模证明了两个原体在甜味受体的活性状态下均可容纳非 蛋白质配体,并且这一观点还得到了实验结果的支持。
(一)甜蜜素的物化性质
当生产果酱、果冻时,为了改莆这类产品的质构,必须添加些山梨糖醇之类 的填充剂,这样可以生产出较蔗糖产品能萤低得多的产品来。相对于用蔗糖的产 品来说,使用安赛蜜的果酱、果冻由于含渗透活性的化合物浓度低,因此不易受 微生物侵染而腐败,适当添加些防腐剂也有助于避免微生物的侵染。
(1)以环己胺和氨基磺酸钠为原料
差异可能是前文所说的原因:产物Z - Asp - PheOMe和PheO.相互作用,形成 了不溶于水的类盐物Z - Asp - PheOMe ? PheOMe,怛它在水相pH6时会部分分 配在有机相中。