乡城县果葡糖浆
E8,播/】丨丨?专—?性熟化切动子(toinalo fmit - ripening specific promoter);
表3-19给出了这两种三氣蔗糖衍生物的AH、B、X距离。对于两种三氣 蔗糖衍生物(少=75。,少= 95。),如果以2-OH (AHS) /3 - O (Bs)为AH/B 对,甜味分子的0-2…0-3…Cl-f距离并不满足AH、B、X甜味三角理论 (AH…B= ~0.30nm' AH …X=0.35nm、B…X =0. 74nm)。其中果聚糖衍生物 AH、B、X 的距离分别为 AH …B = 0,285nm、AH …X = 0. 687nm、B ??? X =
注:NAS由粉红色表示,NBS由蓝色表示。
二、阿斯巴甜的甜味特性一)阿斯巴甜的甜度阿斯巴甜具有淸爽、类似蔗糖一样的甜感 涩味或金属后味,这是它的一个很1[要的优点 甜味剂的口感对比,图2 - 16所示为阿斯巴甜与蔗糖甜味特性的比较W2-15不同甜味剂口感对比 (甜味等用于丨0%的蔗糙水滚液>入口初有苦粗味图2-16阿斯巴甜与蔗糖的甜味特性对比 ——丨0%脒糖水溶液 SMmVkg阿斯巴甜在食品和软饮料中,通常情况下阿斯巴甜的甜度是蔗糖的180 ~220倍(表 2-4)。总的说来,阿斯巴甜的相对甜度与对照物蔗糖浓度呈负相关,并随不同 的香味系统、pH、品尝温度和蔗糖或其他糖的浓度而发生变化。蔗糖浓度与等甜度下W斯巴甜浓度的比值。
三、二氢查耳酮的生产技术
表S -5 嗉吗甜对各种风味的彩响悄况1
基于Searle公司的开拓性工作,Ariyoshi提出L -天冬氨酰胺的甜味模型理 论,这个酰胺是用具有合适立体构象的小基团R,和大基团K2进行《-取代的。 通过对这种模型的改进,发现刚性带有适当分支的R2基团能明显提高化合物的 甜度。所有的高效甜味剂(甜度大于蔗糖的1000倍)至少有一个酯基或酰胺基 团作为R,或R2,而且肽键上不能有取代基。天冬氨酰残基可通过氨基的酰化作 用来改性,这样有时会产生非常甜的化合物。
蔗糖的能量值为16.7kJ/g,阿斯巴甜为16.7kJ/g,纽甜<1.2kJ/g,根据这 些数值可以很容易地计算出,含100g/L蔗糖的饮料能虽为1700kJ/g,含 525mg/L阿斯巴甜的饮料为8.92kJ/g,含17mg/L纽甜的饮料则小于0. 02kJ/g。 也就是说,用阿斯巴甜的饮料所含能量比用蔗糖的低0.52% ,而用纽甜的饮料 所含能S比用阿斯巴甜的至少低0.22%,比用蔗糖的至少低0.001%。从实际效 果看,可认为纽甜是无能量的甜味剂。
不同的Candida utilis菌株电脉冲转化的效率有较大不同。将Bgl D酶切后的 PCLRE2通过电穿孔转化至ATCC9256和ATCC9226,都能得到CYH抗性菌落, 多拷贝载体DNA也串联整合至rDNA区,但转化率都不到ATCC9950的10%。 整合至ATCC9256的pCLRE2拷贝数为6~8,整合至ATCC9226的拷贝数为 5-9,整合至ATCC9950的拷贝数为10?12。
第二节甜菊双糖苷甜菊苷带有较明显的苦涩味及薄荷醇味,甜味特性不太完美。甜菊双糖A 苷的甜度大约是蔗糖的450倍,甜味特性比甜菊苷更接近于蔗糖。含有甜菊双糖 A苷的甜叶菊粗提取物也因此比纯净的甜菊苷更甜、风味更好。虽然甜菊双糖苷 仍带有轻微的苦涩味,但比甜菊苷要弱多了。甜菊双糖苷~在食品和饮料中的 用量很少,因此它带有的微弱苦涩味对其影响不大。由于甜菊双糖苷的甜味特性 好、甜度大,世界上已有数个国家和地区,特别是日本、以色列和美国都在努力 实现商业化生产。