清城区麦芽糖醇
纽甜在用萤范围内对溶液的黏度(在5g/L浓度下小于5mPa?S)、表面张力 (在0.015g/L浓度下约为65mN/m,5g/L浓度下约为38mN/m)和pH (在 0.158/1^的浓度下为7.01,lg/L浓度下为5.8)的影响可忽略不计。它极小的黏 度不会对混合产生任何影响,它对水溶液表面张力和pH的影响可忽略不计,如 在碳酸饮料中不会引起过分起泡的现象。
(四)进化启示
新橙皮苷在国外市场上有销售,也可从柑橘皮中提取或由柚苷合成而得。苦 味橘子,或西班牙塞维利亚城(Seville)的一种橘子是新橙皮苷最好的天然来 源。分类学家把许多根本不同的、化学上不相称的苦味橘子归类为酸橙(CUmS aurantium) a这其中有些对提取新橙皮苷的价值很小,但有些变种含有较多的柚 苷、新橙皮苷和橙皮素。用乙醇能从小的未成熟的水果中提取到较多的新橙皮 苷。可以利用它比柚苷更难溶于水比橙皮素更易溶于水的特性而将之与柚苷和橙 皮素分开。
注:先将胶质基料加热至71.71,混合5min,加人山梨糖醉液混合5min,之后依次加人丨/3山梨糖 醉粉、丨/3山梨糖醉粉、甘油和香柄及病氽的丨/3山梨糖醉粉、阿斯巴甜。每次加人部分配料后黹混合 5min0最后将均匀的混合料冷却至37.8-43.3T,挤压成片状、球状或条状后即坷包装。
在多数情况下,上述的开环反应均可定量进行,因此,从黄烷酮到査耳酮冉 到二氢查邛酮的得率一般都比较高。如表4-17所示,用来生产甜味剂I、n和in (结构式见图4-27)的黄烷酮来源于柑橘,它们往往是柑橘皮的主要成分。有两 种黄烷酮(IV和V)为包含有芦-新橙皮苷(2-0-a-LP比喃鼠李糖基-卢-D- 吡喃葡萄糖)的糖苷,还有-种黄烷酮(VI)包含芸畚二糖(6-0-a-L-Ptt: 喃鼠李糖基-沒-D-吡喃葡萄糖)(结构式见图4-28)。如果酚类或黄酮类糖背的糖 基是卢-新橙皮糖或/3-D-葡萄糖的话,则它们为有味物质(苦味、甜味或苦甜
从图中可以看出,位于果糖基单元的i.'-ch2 (x4s)和r-ci (X8S)这两 个毗邻的疏水部位和受体蛋白质的X丨(4是指从蛋A质N末端数过来的甜味蛋 白受体中与甜味分子疏水基团X结合的氨基酸残基侧链的序数,下同)和W氨 基酸残基侧链分别相互作用,三氣蔗糖葡糖基单元上轴向的4-Cl (X5S)则和 <氨基酸残基侧链相互作用。而且,果糖基单元上的< -0H以质子供体 (AH4s)的形式与)C氨基酸残基侧链形成额外氢键。该氢键C0CT……H0 (0. 28nm, 160°)的形成,要求呋喃环的假旋转和分子内糖苷键C, - 0 - Cr的轻 微转动,这可能得到在6-0H和6'-C1间所形成的弱分子内氢键的帮助。位于 果糖基单元的&-C1因此占据了可与受体活性部位相互作用的位罝,从而有利 于甜度的增强。
二、Pentadin
综合上述分析,天冬氨酰残基在水溶液中优先存在的构象是Dn,这点在众 多研究中结论是一致的。对于C-端氨基酸残基来说,有4 ~5个研究认为它在 阿斯巴甜或其蛋氨酸同型物中优先存在的构象是Fd。因此,甜二肽的优先构象 就是FdDu。但Goodman等人分析却认为应该是F,Dd构象。虽然对优先存在的 构象没有一致的看法,但对由于苯基及天冬氨酰基偏转(Fb*Fb)引起的弯曲 构象的看法相一致。
[131]和[135]化学结构比较稳定,不易环化成二酮基哌嗪,但它们的甜 度均比阿斯巴甜小。后来,法国的研究者发现Af- (4-取代苯基甲氨酰基/硫代 甲氨酰基)-L -天冬氨酰二肽及其相应的氛基亚氨基化合物的甜度竟然比阿斯 巴甜甜100倍,令人大为吃惊。表2-60给出了部分典型例子。