青山湖区甘露醇
嗦吗甜分子上带有强阳离子电荷,能与形状合适、带阴离子电荷的食品组分 (如食用胶及合成色素等)发生反应生成盐或聚合物,这可使嗦吗甜分子发生单 聚合、二聚合或多聚合作用,从而使其甜度降低甚至沉淀析出。嗦吗甜不受中性 或微酸性多糖与蛋白质如糊精、麦芽糊精、纤维素衍生物、阿拉伯胶、黄蓄胶、 明胶和阿拉伯半乳聚糖等的影响,但当果胶、羧甲基纤维素、角叉胶、瓜儿胶、 刺槐豆胶和藻酸盐等过量存在时,会使嗦吗甜丧失一部分甜味。
甜受体研究表明,化学感是由有序脂质传导,酸、咸、苦味受体均系脂质,甜 受体是蛋白质,苦受体可能也与蛋白质相连,它们均位于味细胞顶端的微绒
为生产分泌嗦吗甜,构建了四个表达质粒pBKThb、pCKThb、pGDTh、 pGPThh (图5-6)。所有质粒均含有信号序列和编码的B2酯酶氨
日本DaiichiSeiyaku有限公司曾做过研究。此法路线短,原料易得,但产物 复杂,反应时间长,产率较低。
续表注:①Me 平基;Et 己基;c 环。②以摩尔教计,与2%庚糖溶液(58.4mraol/L)相比较的倍教图2 -42 阿斯巴甜、纽甜的疏水结合位图 (1)从阿斯巴甜分子出发,在人体甜受体中寻找第2个疏水性结合位(HBP)(2)在纽甜分子中第2个班水性结合位的存在
尽管有着甜度和稳定性的优势,但由于阿力甜在某些饮料中会呈现明显的硫 味,而令人难以接受。直至今日,阿力甜尚未被FDA认可,全世界也只有中国、 澳大利亚和墨西哥等6个国家批准使用,我国卫生部于1994年批准阿力甜作为 食品甜味剂使用。19%年,世界食品添加剂联合专家委员会确定的阿力甜ADI 值为 1 mg/lcg。
目前用基W工程生产嗦吗甜的研究很活跃,表5 - 6所示为其中一些研究结 果。许多研究从学术意义上说非常成功,但产率还无法与从植物提取的相竞争。 嗦吗甜在微生物中的表达水平需达到lg/L,其成本才能与天然提取的相当,目 前还没有一种重组嗦吗甜达到这个表达水平。
(一)阿力甜的溶解性在等电点pH条件下,阿力甜极易溶于水,也易溶于其他极性溶剂(表 2-34)0阿力甜几乎不溶于亲油溶剂中,这与分子极性结构的理论分析结果相 一致。从表2-35可知,阿力甜在水中的溶解度随着温度的上升和pH偏离等电 点而快速上升。在pH3或pH8时,室温下的溶解度超过40%表2-3S 阿力甜在不同温度和pH的水中的溶解度单位:质S分数%阿力甜的髙水溶性与其他二肽甜味剂(如阿斯巴甜)极冇限的水溶性形成 鲜明的对比,这有助于调制高浓度的浓缩甜溶液,而便于复杂配料的混合操作。
(二)甜菊苷向甜菊双糖A苷的转化1977年,日本田中等人成功地通过酶水解,将甜菊苷转化成另一种天然双 蔽苷Ru丨)usoside (我国华南地区截薇科植物Rubus suavissimus的叶子中含有这种 糖苷,参见本章第五节),然后再通过三个步骤即可转化成双糖A苷,产率为 75%。甜菊苷向甜菊双糖A苷转变的化学途径见图4-16。
.钳味与.祺味剂瑪论