马尔康市乳糖
用时会发生明显的协同增效作用,但它与@
由于酵母宿主中内源有对CYH敏感的L41基因,因此细胞中需有多个该标 记基因(3 ~ 10拷贝/细胞)以选择CYH抗性转化体。为增加每细胞中整合载体 的数目,通过从5#端缺失CYH抗性基因的启动子区域构建启动子缺失的CYH抗 性基因的质粒[图5-13 (1)]。该质粒在rDNA片段处线性化后转化至 尽管在亲代质粒PCLRE2 (图5-14)和pCLREll间没有显著的转化率差别,但 进一步的缺失会降低转化率。pCLRE15和pCLRE16的转化率约是pCLRE2的 15%,pCLRE17约是pCLRE2的0. 3%,PCLRFJ8则没有产生转化体。以丨41基 W在每细胞中的拷贝数为2计,经估计拷贝数最多的PCLRFJ7的拷贝数达到每
图2 -45 17mg/L纽甜和525mg/L阿斯巴甜水溶液的瞬时甜味分布(2)滞后时间、,即强度达到超过基线水平所需的时间(s):阿斯巴甜 1.3,纽甜 1.5。(3)达到最大钱度所需的时间(s):阿斯巴甜丨2.3,纽甜丨6.6。(4)最大强度持续时间(s):阿斯巴甜6.1,纽甜2. 8(5)结束时间即强度回到基线水平所需的时间(0:阿斯巴甜80.5, 纽甜94. 8 o(6)曲线下总面积(以强度单位x时间表示):阿斯巴甜425,纽 甜49丨。.
图2 - 88 阿斯巴甜的5种类似物
~O- S. muians ZAHT - -A- - 5. muians SB25 - -O- - 5. muuws SL - 1 -? -B- ? - S. mutans NS - XIII
如图2-86 (1)和(2)所示,二肽甜味剂阿斯巴甜分子j: AH +、B-和 X分别为NH/、C00 —和苯环,阁2-86 (3)为阿斯巴甜的手相异构体。对比 图2-86中的(2)和(3),两者的分子基团完全一样,惟一不同之处在于苯环 的位置。(3)中的苯环错落在一边,不似(2)中的苯环与AH + 和B-交奋闬2-86 AH-B-X模铟下的阿斯巴甜及手相异构体
Yutaka Masuda等对奇异果素的cDNA序列进行克隆并测序。测序发现奇异 果素前体由220个氨基酸组成,其中前29个氨基酸构成了一个信号序列。由奇 异果素的d)NA序列推导出的氨基酸序列与纯奇异果素直接测定的氨基酸序列间 有一个氨基酸不同。从cDNA序列分析得到的129位氨基酸为Trp,而经Edmaii 自动降解法测定为Ser。Northern印迹分析显示在RichtMla dulcifka授粉3周后, 编码奇异果素的mKNA就在果实中表达了,并只出现在果肉中。另有报道采用 免疫学方法即用奇异果素抗体检测奇异果素,在授粉8周后才观测到奇异果素。 这两个结果的差别可能是因为奇异果素蛋白质合成时间和奇异果素的mRNA表 达时间不同或是因为奇异果素基因的表达结果的翻译后修饰受到严格的调控。
草亭酸。用髙效液相色谱可检测出血浆中甘草甜素和甘草亭酸的含最。用 12.5mg/0.5mL的剂量注射内鼠的静脉,不久血浆中甘草甜素的浓度迅速下降,在 最初的60min内下降速度很快,接者是缓慢的下_,再过120min后浓度稳定在 左右。当注射剂量为5mg/0.5mL时,最初60min内甘草甜素浓度急剧下 降,90min后几乎检测不到甘草甜素c对以口服方式进入机体内的甘草甜素及甘草 亭酸在血浆中的存在情况也做了分析。经口摄取后,30min内血浆中甘草亭酸浓度 达到最高值,240min后浓度开始下降。甘草甜素浓度的增加速度中等,在最初 240min内甘草亭酸的浓度大于甘草甜素,240min后它们在血浆中的浓度趋于相等。 甘草甜素的分子质萤较大,在肠道内先被转化为甘草亭酸后才被小肠吸收。