泌阳县木糖
后来,由于甜蜜岽在各种食品、饮料中得到广泛的应用,美国其他几家公司 也开始生产,其中包括Pillsbnry公司、Pfizer Inc公司、美国甜密素股份有限公司 和Miles实验室等。在1970年禁用前,东亚的FJ本、韩国和我国台湾省也有 生产。
图I -24 Suosan甜味衍生物的多点结合模型 柬基Suosan ( Cyanosuosan)属于典型的B、AH、D型甜味剂,CN基不仅作 为氢键受体基团,也是重要的吸电子基团,它能增强脲基NH的酸性,因此氰基 Suosan的甜度是蔗糖的650倍。就像超强阿斯巴甜,如果用吸电子能力强的硫朌 子取代氧原子,增强脲基NH酸性,使甜味分子与受体蛋白的亲和力增强,所以 硫代氮基Suosan的甜度是蔗糖的2900倍。
Temussi甜味模型AH、B、X甜味理论提出后不久,Temussi等人基于刚性甜味化合物的精确 重叠,提出了一种更为详细的模型,这一模型通常被称作“Temussi模型”。由 于刚性甜味化合物儿乎没有自由度,因此可以直接地反映假定的受体空穴的大致 形状。图1-16 (1)所示为容纳了一个大刚性甜味分子一~3-苯氨基-2-苯 乙烯基-3H-萘并(1,2-d)咪唑基-5-磺酸的活性位点的主要轮廓。
⑦蔗糖C-6位上的取代对蔗糖增甜作用非常不利。
相比于蔗糖,甜蜜素的甜味刺激来得较慢,但持续时间较长。通常认为它的 甜度是蔗糖的30倍。这个比值是用稀水溶液通过感官品尝得到的,在实际应用
碳水化合物的甜分子识别单糖结构的微小变化如个別手性碳原子的变化,均会影响化合物的甜味。 a-D-半乳糖不如D-葡萄糖甜,它的C - 4立体异构体以及L-山梨糖、 D-果糖的C-5立体异构体的甜度均只有D-葡萄糖的1/5。但D-果糖比 D-葡萄糖和蔗糖都甜,很大程度上是由于/3-D-吡喃果糖的存在(表1-1)。 卢-D-吡喃果糖中可能存在一种三角形生甜团系统,即在其椅式构象中, AH = 1 -OH, 8=2-0和乂=6-!1。这些基团与甜受体发生作用时呈顺时针方 向排列[图丨-11 (a)],而甜受体基团(NH/C0/R)也呈顺时针方向排列,以 便于和呈顺时针安排的生甜团发生键联(图1-丨2)。有一些事实可以证实上述 观点,就是甲基-办-D-吡喃果糖苷的甜度比办-D-吡喃果糖弱得多;在 L-果糖中羟基的作用在于使其分子结构颠倒后仍具相同的构型(AH=2-OH, B = 1 -0fflX=6-H);芦一D—批喃葡菊糖H:a_D-P比喃効?萄糖甜得多;/3-?1 糖的甜度是ot-乳糖甜度的两倍。这些事实,再加上甲基吡喃葡萄糖苷 和《,a-海藻糖只有萠糖甜度的1/8这一事实,表明异头碳原子的羟基参与了化合物产生甜味的过程。在jS-D-吡喃葡萄糖中可能存在X=5-H,AH=2-0H和 B = 1-0的三角形生甜团,并在以图1-11 (b)方式给出的平面上呈顺时针排 列。这与Birch等人关于AH是C -3或C -4上羟基的观点不一致。
二氢杏耳酮最主要的优点是甜度大、性质稳定、口感淸爽。然而,由于其甜 味来得太慢、后味太长,加上带有轻微的甘草或薄荷醇之类的苦后味,又因其水 溶性很差,因此仍未被广泛应用。同时美国食品与药物管理局认为已有的毒理试 验尚不能确立它的食品甜味剂地位,这就更阻碍了它的应用。据推测,如果其安 全性问题得到确认后,二氢查耳酮可能在欧洲一些国家有些市场。目前,世界上 已有比利时等少数几个国家批准二氢丧耳酮的使用。
为了提髙中性或碱性条件下嗦吗甜的稳定性,人们进行了很多研究。1981 年美国一篇专利报迫f嗦吗甜与明胶溶液(预先用食用酸调至pH2. 7)混合能 明显提商其稳定性。这种混合物即使将沸水冲入,冷却后其甜度仍保持不变。 1979年日本一?篇专利描述了使山明胶、食用酸与氨基酸等物质来提高嗦吗甜产 品的质摄。
泌阳县木糖
展开阅读全文