甘洛县糖精钠
四、纽甜的生产技术纽甜可以由阿斯巴甜(APM)与3, 3 _ 二甲基丁醛(简写为DMBA)经催 化加氢还原烷基化反应而制得;也可以将阿斯巴甜的前体物与3, 3-二甲 基丁醛经过类似的反应后氨解得到。由于阿斯巴甜供应充足,价格稳定,故一般 采用第一种方法合成。
图5 - 1所示为嗦吗甜分子三级结构示意图。
有人曾用酶法和化学法合成过蔗糖,也用类似的方法合成过自然界不存在的 L-蔗糖(图1-2)。然而令人惊奇的是,L-蔗糖与自然界天然存在的D-蔗糖 一样甜。L-蔗糖与D-庶糖在立体化学上呈镜像关系,是由L-果糖和L-葡萄 糖缩合而成。重要的是,L-果糖和L-葡萄糖-样也是甜的。由于L-糖不参 与人体代谢,W此令人很感兴趣,只要经济上合算,就可作为新型功能性甜味剂 加以开发。
从各种精神物理学数据可推测认为,甜味刺激是一种有序的不可逆历程,如 图1-26机理3所示。如果有序排列确按图上标明的方式存在的话,则其本质 包括:
注:①glc =仗葡筠糖基,rha =吐味鼠李糖基c②Rubu?o?idc = ■W■叶患构子芬③甜jec苷即卫茅B苷。图4-丨甜菊醉苷体的化学结构
在mGluRl的活性形态(开-合)中,其两个活性位点都可容纳一个谷氨酸 分子。但是,由于甜味剂大小和化学组成的多样性,研究人员还未能确定在这些 甜味受体中,两个配体结合部位是否可以与Aoc - AB和Aoc - BA活性形态中的 甜味配体结合。Morini等考察了大班甜味剂在这些模型的每一个空穴的结合情 况,结果发现闭合的原体——T1R2 (A)和T1R3 (A)的活性位点太小,因此 不能容纳大多数大的合成甜味剂。如图1-29所示,在mGhiRl中,闭合的原体 (M0L1)和打开的原体(M0L2)都与谷氨酸在由亚结构域LB1和亚结构域LB2 分界面为边界的活性位点结合。两者惟一的区别是,在打开的原体中,分界面 LB2并不参与结合。相反,由于一些甜味剂比较大,Aoc-AB和Aoc-BA中的 打开的原体的活性位点都包括了 LB1和LB2的分界面。选择通过对接来探测结 合情况的甜味剂均为不同种类甜味剂(包括糖、二肽和超级甜味剂)中的典型 代表。在原体的活性合-开状态下,研究人员发现,打开的原体的结合部位可能 符合许多典型的甜味化合物。相反,至于闭合的原体的结合部位,研究人员却难 以实现其与许多较大配体的对接。
在非选择性培养基上培养转化细胞,在起始培养时各转化体的莫奈林表
注:本表系水滚液中的测定教据,括号内教振系蔗糖与二氬查耳《等甜度时的浓度比值.即二氮金卑 明的相对甜度。
④双酶-化学联合法(单基团保护法);
溶解度的影响 溶解度之间的关系曲线餐桌甜味剂、饮料和甜什锦点心时,必须 充分考虑到这几个因素的综合影响。有些 专利文献描述了通过增强分散作用提高阿 斯巴甜的溶解度,以保证得到均匀、湿润 的产品。阿斯巴甜在其等电点(p/5.2)的水中 溶解度最小,其溶解度随温度升高而增大。