博罗县甘露醇

微信扫一扫,分享到朋友圈

博罗县甘露醇

博罗县甘露醇
Birch及其同事通过对单糖和二糖进行化学改性,主要娃通过醚化、酯化或 取代一个至数个羟基团等方法,来探寻分子中包含在生甜团内的羟基,并命名为 X/AH/B系统。对于葡萄糖分子来说,首先可以排除最基本的6-羟基和1 -羟 基团,因为甲基-D-吡喃木糖苷具有甜味。4,6-0-甲基和甲基《-D-吡喃 葡萄糖苷衍生物不具有甜味,因而也排除了 2,3-乙二醉[邻位倾斜(偏转) 羟基],这样就只有3 -和4 -羟基才有可能构成AH和B单元。通过考察3 -羟 基取代的吡喃匍萄糖苷和木糖苷分子结构,可知3-羟基为B基团。蔗糖分子中 的某些羟基对甜味当然有作用,因此人们选用很多方法来掩盖、改变或替代蔗糖 分子中各个专一的羟基,利用生成的各种衍生物就能研究蔗糖甜味与结构的 关系。
将 20g4-PAS (0.036mol)加人 100mL 含 2 ~ 10mL 乙酸(0.035 ~0. 175mol) 的甲基异丁基酮中,加热回流3?4h,部分浓缩。冷却此溶液到601,加庚烷冷 却结晶,经洗涤干燥得到固体产物,为2,3,6, 3\ r -五乙酸蔗糖醋 (6-PAS〉。
五羟黄fW-3-乙酸觔 乙fit萆 H (2R, 3R)
简单的疏水D-氨基酸和合成二肽(如阿斯巴甜)就可以激活甜味受体。 所有这些分子,如谷氨酸,都有一个相同的氨基酸结构成分——这一结构成分由 羧基及其相邻的氨基组成u Morini等猜测,受体T1R2-T1R3的活性位点应保留 了所有这些必要特征,否则就不能与这一结构成分结合了。换句话说,在由 mGluRl推测T1R2-T1R3的结构时,位于mGluRl空穴壁上的那些结合由竣基 及其相邻的氨基组成的结构成分的极性残基应当高度保留。事实也证明, mGluRl中那些直接和由竣基及其相邻的氨基组成的结构成分发生相互作用的残 基确实完好地保留了下来。相反,研究人员估计,空穴其他部分的残基,即 mGluRl中那些结合谷氨酸侧链的残基,可能在T1R2-T1R3中由极性转为非极 性。Morini等通过对四个模型的研究,发现结合谷氨酸的由羧基及其相邻的氨基 组成的结构成分的残基在所有原体中都完好保留,而mGluRl中联结谷氨酸盐侧 链的残基则变成极性更弱或不带电的残基。
这是它的一个重要优点,因为有些甜味特性甚好的甜味剂(如阿斯巴甜)就是 因为对热或对酸不稳定而严JS影响了其应用范围。含有安赛蜜的酸性饮料即使在 极限(401、PH3)环境条件下也未发现甜味有仟何损失现象。含有安赛蜜的饮 料在正常杀菌条件下(低温长时或高温瞬时杀菌)也不损失其甜味。
草亭酸。用髙效液相色谱可检测出血浆中甘草甜素和甘草亭酸的含最。用 12.5mg/0.5mL的剂量注射内鼠的静脉,不久血浆中甘草甜素的浓度迅速下降,在 最初的60min内下降速度很快,接者是缓慢的下_,再过120min后浓度稳定在 左右。当注射剂量为5mg/0.5mL时,最初60min内甘草甜素浓度急剧下 降,90min后几乎检测不到甘草甜素c对以口服方式进入机体内的甘草甜素及甘草 亭酸在血浆中的存在情况也做了分析。经口摄取后,30min内血浆中甘草亭酸浓度 达到最高值,240min后浓度开始下降。甘草甜素浓度的增加速度中等,在最初 240min内甘草亭酸的浓度大于甘草甜素,240min后它们在血浆中的浓度趋于相等。 甘草甜素的分子质萤较大,在肠道内先被转化为甘草亭酸后才被小肠吸收。
理首先是3,3 - 二甲基丁醛的醛基与阿斯巴甜的末端活性氨基缩合生成亚胺, 再通过催化加氢,将亚胺的双键还原得到/V-[/V-(3, 3 二甲基丁基 天冬氨酰]-L-苯丙氣酸-1 -甲酿u选择丨H醇作为溶剂是因为中醉的极性比较 小,有利于反应的进行。加水搅拌和用水洗是为了除去反应中产生的一些极性比 纽甜大的副产物。
分离提纯过程,主要根据嗦吗甜的水不溶性及电荷特性进行。阁5-4所示 为从酵母中分离提纯嗦吗甜的流程图,得率达80%,纯度>95%。在该流程后, 还可以冉进行SDS凝胶电泳或在离子交换层析后,在lOOmmol/L醋酸中进行 SP-SphadexG-75凝胶过滤,去除少萤杂蛋白。提纯结果表明,转化酵母中的 嗦吗甜约占不溶性蛋白质的20% (或总蛋白质的10% )。
世界健康组织食品添加剂联合专家委员会于丨983年审杳了它的安全毒理问 题后,于1985年6月同意作为一种安全的添加剂加以使用,对其ADI值不做规 定。美国香料香楮研究会认为它可作为一种公认的安全物质,用在n香糖中作风 味增强剂。
C.ti/而的基因组的DNA文库中分离得到3-磷酸甘油醛脱羧酸酶(GAP)基 因,其DNA序列测定后发现有一 1005hp的ORF片段0从C. utUis中得到的 GAP基㈥克隆至6.5kh £co/U片段。起始密码子上游的Ikb片段(-976? -1,推断+丨为翻译起始位点)作为启动子,用引物在V端加上N?d位点, 在3'端加上Xbal和BamHI位点。终止密码子下游0.7kb片段(+ 1006? + 1728)作为终止子,用引物在V端加上BamHI位点,在V端加上Pst丨位点, 将两片段在pBluescript SK的No丨丨和Pst丨位点间连接,构建得质粒pGAPPTIO (图5 - 15)。含单链莫奈林的0RF的0. 3kb的Dral - Bgl D片段插至pGAPPTIO 的平头Xbal位点和BamHI位点之间构建得PGAPM3。含rDNA片段的表达质 粒如下构建:从pCLRE2 (图5-14)中分离得到的含部分rDNA的1.2kb Apal 片段插至pBluescript SK的Apal位点构建得质粒pCRAl。在pCRAl的Xhol切 割平头端连接上Sphl连接体构建得pCRA2,在pCRAl的Asp7丨8切割平头端 连接上Notl连接体构建得pCRA3。pCRA3的1.2kh rDNA切割为0.5kb和 0. 7kh Notl - Bgl n片段后连接到质粒pUCBgl的Bgl n位点,构建得质粒 pCRA10o其中质粒pUCBgl由pUC19经EcoRI和HindHI酶切,并在Klenow酶 切处理后在切点处连接Bgl D连接体构建得到。质粒pCRA2经Sphl和EcoRI 酶切后,与由PCLRE16分离得到的含CYH抗性基因的1. Ikl, Sphl - KcoRI片 段连接构述得pCLR216。质粒pCRAlO经Xhol和Ps丨I酶切后,与含CYH抗性 基因的丨.1比?311-5&丨1片段(-184?+974)连接,构建得到pCRALll。从 PGAPM3分离得到的含莫奈林表达盒的2. Okb Notl - PstI片段插至pCLR216的 Notl和PstI位点构逑的质粒PCLRM216 (图5 - 16),插至pCRALl 1的Not丨和 PstI位点间构建得到质粒pKMll (图5-16)。C. W/is的URA3基因经与 的ura3突变子减基互补克隆得到,用作整合目标。URA3的801bP ORF 的 区域(+4?+356)和 3'区域(+356 ~+685)分別为 SaH-Bgin 和Bgl丨丨-AsP718片段,这两个片段插至pUC19的Sail和AsP718构建得质粒 pURAl0在pURAl的Hindffl酶切端和Asp718酶切平头端加上Not丨连接体分 别构建得到pURA2和PURA3。从pURA2的5,端分离得Noll - Bgl H片段,从 PURA3的1端分离得BglD - Notl片段,两片段连接至质粒pUCBg丨的Bgin位 点构建pURAlO。含CYH抗性基因的1. lkb PstI - Sail片段插至pURAlO的Sail 和PstI位点间,构建得pURALl 1。含莫奈林表达盒得2. Okb的Notl - PstI片段 插至pURALll的1^11和?8|丨位点间构建质粒pUMll (图5-16)。

展开阅读全文
本站部分文章来自网络,不代表立场及观点,转载请注明出处,如有侵权请联系即删除。 广告合作事宜,请联系:133 2802 0789(微信同号)

你也可能喜欢

评论已经被关闭。

插入图片
微信 微信
微信
电话 电话
13328020789
返回顶部