应城市糖精钠

微信扫一扫,分享到朋友圈

应城市糖精钠

应城市糖精钠
<5^ 要增加蔗糖的甜度就必须提高分子的亲油性,特别是在轴向4-C及r-c 位上,而2-C和3'-C滞保持羟基游离的状态,因为它们是甜味三角形理论中 的AH和B单元。如按单基团取代比较,蔗糖分子中各羟基的相对活性可大体排 列为:6,>6>4>r>2>3, 3\ 4'但这仅是个原则,羟基被活化而形成活化 级络合过程中还会受到空间阻碍作用,有些羟基在与较大基团作用时会因空间排 列阻碍而受抑制,从而失去应有的活性。例如,4位仲羟基虽比1,伯羟基活泼, 但在酯化反应中各羟基反应的活泼次序是.6-OH,6,-OH>r-OH>2-OHt 且在与像三苯基氣甲烷这样大的取代基团反应时,却是r位的伯羟基优先活化。 通过对氣代产物分离和鉴定,可知蔗糖分子立体选择性反应的反应活性顺序是: 6, - OH >6 - OH >4 - OH > 1, - OH >4, - OH。1, - OH 的氣化速度之所以缓慢, 是因为它是受阻的新戊基型的初级羟基,且毗连于a-异头物基团上。
表2 -50所列的一系列L -天冬氨酰-D -丙氨酸酰胺化合物,要比L -冬 氨酰-D-丙氨酸酯化合物稳定得多。无环酰胺和环己基酰胺化合物[81] ~[83]的甜度仅是蔗糖的100倍左右。经过引人刚性分支“下面”基团的化合物[84]~ [91]的甜度得以明M提高。环己基环的C-2和C-6位上简单的甲基 取代,可使化合物的甜度增加6倍,通过对R基团的优选,最后选定2, 2, 4, 4-四甲基-加过《^-酰胺[88]作为新型二肽甜味剂加以开发。这种化合物具有 较好溶解性和比阿斯巴甜更稳定的特性,已被命名为阿力甜(参见本章第三节)。 相应的D -丝氨酸敗胺和0 -甲基-D -丝氨酸酰胺化合物的甜度均要低一些。但 令人奇怪的是,这一系列中的葑基酰胺[91]只有中等的甜度,而前述的L-天冬 UWi-L-甲基葑基丙二酸二酯在酯类系列化合物中具有最大的甜度。
增加C-f取代基的大小对甜味的增强有积极作用,取代原子半径越大,甜 度越强。4,-碘-4,r, 6^-三氣蔗糖衍生物比蔗糖甜3500倍,而4,丨',4#, 6,-四溴蔗糖衍生物的甜度是蔗糖的2200倍,C -4'取代基从氣原子到溴原子, 随着原子半径增加,甜味大约增加50%。
(-)甜味受体的发现
图1 - 34 T1R2 - T1R3受体的结合部位注:两个钴合非蛋A质甜味剂的不同大小的活性位点,一个位于TMD的钴合甜蜜素的部位,另一个 位于站合蛋质的外部“横形”部位
Sun等尝试了在转基因马铃磐中生产重组马槟榔。研究人员把全长马槟榔基 因克隆于带马铃薯块茎特异性patatin启动子和来&胭脂碱合成酶基因的终止序 列(NOS. sub. ter)或带CaMV 35S启动子和NOS. sub. tei■的栽体,并把基因和栽 体转染至马铃薯。他们用Southern印迹法分析了转基因植物并通过Northern印迹 法证实了马槟榔n被成功转录。
用节杆菌MrtArofcocter sp. K-1)的芦-呋喃果糖苷酶,在40弋,pH6.5, 催化蔗糖和甜菊苷(S)或甜叶悬钩子苷(RU)的混合体系进行转糖苷反应2h, 对产物果糖基甜菊苷(S-F)和果糖基甜叶悬钩子苷(RU-F)分析发现,果 糖基以)8-2, 6糖苷键连接至底物19-竣基相连的葡糖基上。产物的味质变化 见表4-12,可以看出S-F的甜味特性与阿斯巴甜相当。呋喃果糖苷酶催化转糖基反应产物的味质
关于嗦吗甜在各种含水香味溶剂.(如乙醇、异丙醇、甘油和丙二醇等)中 的溶解性情况,前面已讨论过。试验表明,这些溶剂对嗦吗甜的甜味特性及风味 增效特性影响很大。例如将嗦吗甜的乙醇溶液(含乙醇60%)置于3CTC下贮藏 1周后,取出相当于2mg嗦吗甜的溶液冲稀释至lOOmL,就感觉不到甜味。而这 一浓度的嗦吗甜溶液的甜度通常都是很高的,相当于4% 的蔗糖液的甜度。 虽然贮藏后的溶液并没发生浑浊或沉淀现象,但需添加为通常数萤10倍的嗦吗 甜才会感觉到甜味,这说明大约有90%的甜味已经丧失。然而,!h以后重新品 尝这种溶液时发现甜味竟然完全恢复了。进一步的研究发现,时间对这种现象的 发生关系很大(图5-2)。

展开阅读全文
本站部分文章来自网络,不代表立场及观点,转载请注明出处,如有侵权请联系即删除。 广告合作事宜,请联系:133 2802 0789(微信同号)

你也可能喜欢

评论已经被关闭。

插入图片
微信 微信
微信
电话 电话
13328020789
返回顶部