龙岗区乳糖醇
示。由此推测,甜味分子的疏水部位既不是固定的疏水基团,也不是一成不变的。 为了验证这-推测,人们猜测增加蔗糖果糖基部分的疏水性,将有助于它和甜受体 的结合,从而靖强甜味。表3-17所收集到的相关卤代蔗糖的甜度数据,支持了这 种猜测,因为氣取代果糖基上的C-r、C-4'和/或C-6涖羟基,均导致蔗糖衍 生物甜度的增加。
椭岡形标id的部分是链间的二嫌键(C137 - C137)]
蔗糖被卤代脱氧后,其甜度可能增加数倍,甚至数千倍。其中,甜度约为蔗 糖650倍的三氣蔗糖,已被成功地开发为实用塑功能性食品甜味剂,有人甚至还 合成出了甜度高达蔗糖7500倍的蔗糖卤代物,而且这可能还不是其中最甜的。 因此,研究卤代脱氧蔗糖的结构与甜度的相互关系及变化规律,对于揭示甜味剂
两非的当地居民早在几百年前就知道Brazzein这种物质了,人们要么生吃要 么煮来吃,也有人把它用作饮料或食品的甜味剂。
表 2-41
X疏水基团的引入同时也成功地解决了与甜味相伴的手性反常问题。因为 AH、B甜味理论不能解释这样一个事实:大部分D-氨基酸是甜的,但它的 L-对映体却不甜;而糖的D、L-对映体则都是甜的。AH、B. X甜味三角理论 认为,甜味蛋白受体的三个结合基团(一NH/、一0H、一R)是呈顺时针方向 排列的,因此甜味分子中的AH、B、X (如果有的话)生甜团只有呈顺时针方 向排列时才能和同样以顺时针方向排列的甜受体发生键联,从而产生甜味刺激, 如图1 -12所示。
干燥状态下的糖精贮藏数年后未发现任何分解现象。De Gartno等人发现糖 精水溶液在pH3. 3 ~8.0范围内、150T温度下维持lh没发现任何变化,用先进 的髙压液相色谱分析技术已证实了这个结果。只有经髙温、高压和低pH等极端
Oshimn等人在混合液中,用平均尺寸3.4JJLIT1 x9.5m.iti的固体嗜热菌蛋白酶 催化合成Z-A.sP-PheOMe。该混合液组成为乙酸乙酯、苯、甲醉和水,其比例 为50:29:19:2。该方法的主要优点是由于单位体积的酶更多,因而反应器容积 比固定化酶反应系统的小;并由于只有在固体表面的酶分子起作用,因此粒子内 扩散对反应速率的影响可忽略不计。但也存在一个缺点,W为所用固体酶的体积 很小,因此连续反应时,压差很大。