迪庆州爱德万甜
该生产方法所用主要原料为苯酐、氨水、液体氢氧化钠、液氣、硫酸、 盐酸、铜粉、亚硝酸钠、二硫化钠、甲醇、碳酸氢钠等,进行的主要化学反 应有酰胺化、祺夫曼降级、重氮、置换、酯化、氣化、氨化、酸析和中
表2-52 L-天冬氨敢-D, L-氨基丙二酸酜胺酯的结构与甜
马槟榔蛋白II及其同工蛋白(I、1-1、ID和IV)的cDNAs都已克隆并测序 了。马槟榔iv的c端比in少4个氨基酸,因此它可由马槟榔in得到。马槟榔n 的前体由155个氨基酸残基组成,其中包括信号序列的20个氨基酸、N端延伸 肽的15个氨基酸、A、B链之间连接肽的14个氨基酸残基和C端延伸区的1个 氨基酸残基。序列分析表明n刚形成时两条链中插入了 14个氨基酸组成的连接 序列形成单链,然后在蛋白质成熟过程该连接序列被切除。也有通过载体 pET - 15b已将马槟榔的基因转人大肠杆菌中表达。
3-18所示,测定20g 4 - PAS分别与含2%、4%、6%、8%、10%乙酸的 lOOmL甲基异丁基酮回流3、3.5、4h的得率,以确定最佳乙酸浓度与反应时间。 由图可见,当在8mL乙酸/lOOmL溶液中反应3h,得率可达73.2%。另夕卜,
4.对甜味分子空间结构要求的设想由于甜味感觉对底物的要求可以是小如CHC13分子,到大如多肽和大分子蛋 白质,因此可以认为,甜味化合物和甜味蛋白受体之间最初的相互作用,发生在 受体表面部分。对于那些与受体之间无疏水接触的甜味剂分子,由于这种表面吸 附之间的作用力相对较低,故其甜度也低,这也许就是糖和糖醉均不是很甜的原 因。对于那些与受体之间有一处或多处疏水键合的甜味剂分子,除了在AH、B 基闭上的两点接触外,更包含有空间上的疏水键合,这种更深层次的键合则很可 能发生在甜味蛋白受体中类似酶活性位点的“嵴”或“裂缝”中。
在焙烤试验中未发现安赛蜜的任何分解现象,即使用高温短时法烘烤低水分 的饼干也是如此。但如果慢慢升温的话,大约在225弋下安赛蜜会分解。如果快 速升温,则要在更髙的温度下才会分解。
已有几项专利描述了甜蜜素与阿斯巴甜、安赛蜜以及其他甜味剂的协同增效 作用。例如,Sea-描述阿斯巴甜、糖梢与甜蜜素混合使用改善饮料的口感和提 高消费者的可接受性。还有一项专利是关于甜蜜素、阿斯巴甜和糖精的混合物在 曰常食品中的应用。有人认为,甜蜜素与其他甜味剂共同作用,能起到增强甜 度、驱除不良感或味觉滞留现象的作用。
(一)不同卤素取代基对甜度的影响卤素取代基大小及其电负性大小,对蔗糖衍生物甜度具有明显影响。4, r, 6,-三溴蔗糖衍生物的甜度是蔗糖的800倍,而4,\\ 4\ 6-四溴蔗糖衍生物 的甜度为蔗糖的7500倍,显然溴取代基的尺寸能使甜味分子更好地结合到味莆 受体上。电负性较强的氟取代基和尺寸较大的碘取代基都不能如此大幅度地增强 甜味,如4, 6,-三氟蔗糖衍生物的甜度大约是蔗糖的40倍,而4, r, 6'-三碘蔗糖衍生物大约比食糖甜120倍,而相应的氣代蔗糖衍生物和溴代蔗栅 衍生物的甜度分别为蔗糖的600倍和800倍,说明溴代蔗糖衍生物和氣代蔗糖衍 生物具有最合适的分子大小和电负性。