茶陵县罗汉果苷
半乳糖苷酶水解TCR的速率,通常为水解棉籽糖的丨/ (50 ~ 100)。产 物抑制是一个可能的原因,因为半乳糖苷酶常常会受到半乳糖的抑制。另一 个原因可能是,由于自由的C -6位羟基对底物与酶活性部位的高效结合是必窬 的。酶活力降低的原因还可能是由于,位于糖苷键附近的f-Cl会阻碍酶的水 解作用。
蔗糖浓皮/%
⑤脱乙酰化作用,恢复剩余的羟基团,得到终产品三氯蔗糖c
用酶-化学联合方法制备纽甜可以进一步通过固定化酶技术将脂肪酶或酯酶 固定在硅胶、次乙酰塑料(Celite)、DEAE-Sephadex、CM - Sephadex等类似的 固定相上。酶的固定化,不仅可以方便地实现酶的循环利用,还可以很容易地分 离酶和产品,使酶-化学法生产纽甜有着更大的优势。
蔗糖酯化后甜度均戏剧性地下降,它的6 -单取代乙酸酯只有微弱的甜味, 6-0-苯甲酸和6-磷酸酯均没有甜味,6,6#-二酯和r, 6'-二酯也没有任 何甜味,而辛-乙酸酯更是众所周知的苦味剂和变性剂,所以,C-6、c-r和 C-6'上基团的大小,特别是C-6上基闭对分子甜味起者很重要的作用。这些 基团的大小一旦发生任何明显的增大,均会导致整个分子的变大,使得不能与味 蕾甜受体正常配合。6-脱氧和6-0-甲基蔗糖均有甜味,这是因为C-6上基 团较小。而具有较大基团的6-0-苯甲酰酯衍生物就没有甜味,这些事实支持 了上述论点。像4-脱氧衍生物、4-0-甲基蔗糖一样,1'-脱氧和广-甲基酯 也有甜度。这些结果均与蔗糖甜味三角形基团是C-4 (X)、C-2 (B)和 C-31 (AH)的结论一致(图3 - 40)。当蔗糖分子的3'-羟基被酯化成 1-0-乙酰蔗糖时,由于掩盖了生甜团的AH基团,因此,生成物不具有甜味, 这也确证了上述结论。
改进AH、B、X甜味理论的几种假说由于众多含有AH、B体系的化合物没有甜味,而认定甜味的AH、B理论还 有其他附加条件,且X疏水部位的引入也不足以解释所有的甜味现象,因此 AH、B、X三角理论体系还有待进一步完善。
表S -5 嗉吗甜对各种风味的彩响悄况1
图丨-33所示为MNEI和Brazzein的内部(与受体接触的部分)和外部(暴 露与溶剂的部分)的比较。MNE丨和Brazzein的等电点分别是9.0和6. 7。如图 1 -33所示,Brazzdn的负静电势大部分集中在其外部表面
第六节马槟榔及其他
比较糖铕在人体与白鼠机体中的分布情况,可以发现两者的肠道对糖精均不 吸收,进人体内的糖精均从血液迅速地通过肾由尿排出。然而,白鼠血液中糖精 的饱和浓度为200?30