玉溪市木糖

微信扫一扫,分享到朋友圈

玉溪市木糖

玉溪市木糖
在后续的研究中,人们优化了表2-68所示的环丙基酯二肽化合物的“下 面”酯基团。这其中,以正丙基酯的二肽化合物甜度最大,苄基酯的二肽化合 物[丨78]没有甜味,这与对应的成对二甲基化合物[169]甜度为0的情况一 样。有趣的是,iV-丙基-酰胺化合物[179]并不具甜味。
(六)甜菊苷对血糖值的影响
Kunishima等的研究结果表明mGhiRl的胞外N端区域有两种不同的构象: 一种为具有活性的开-合构象,对应的为与配体复合的结晶形态(lewk.pdb) 和非复合的自由态丨I (free form II) ( 1 ewv. pdb);另外一种为不具活性的幵-开 自由态I (lewt ptlb)。综合甜味受体(T1R2和T1R3)的两种序列和mGluRl的 两种构象,可推导出四种可能的异型二聚体。在小鼠序列和笈合态(complexed form) mGluRl校板的基础上建立的首个T1R2 - T1 R3模型就是这四个模型的其 中一个。
图3-21氣化反应的反应机制
1967年,IC Clauss和H. Jensen在进行乙炔与氟磺异铽酸盐的反应时,意外 地发现了一种环状结构的化合物一~5,6 - 二甲基-1,2,3 -氧硫氮杂 环-4 (3H) -2,2-二氧化物带有爽快的甜味。随后的深入研究发现,这类化 合物中带有甜味的甚多,其环上5、6位置h的各种不同取代基团对甜度和甜味 质量有明显的影响。所有的二氢氧硫氮杂环二氧化物,即使环上没有任何取代基 团,也带有不同程度的甜味,其中带短链烷基的化合物甜度最大。对各种不同的 二氢氧硫杂环二氧化物的味觉评价认为,环上不同的取代基闭不仅仅对其甜度而 且对其甜味的纯正性均有明显的影响(见图6-19)。
又有人提出了甜味分子的多点结合理论(如multipoint attachment theory, MPA)来解释蔗糖衍生物的甜味机理。根据这个理论,卩-蔗糖属于!},、B2、 AH,、AH2、XH,、XH2、G,、E_、G2' E2、G3、E3、G4、E4 类甜味剂。而蔗糖 的三氣或四氣衍生物,如4,r, 6f-三氣蔗糖(650x)和4,r, 4',6'-四 溴半乳糖基蔗糖(7500 x>,则属于 B、AH,、AH2、XH2、G,、E,、G2、E2、 G3、E3、G4、E4类甜味剂。正是由于甜味分子与受体在B (C-4)部位作用增 强,且 G,、G4 (C-6,、C-l')或 G,、G2、C4 (C-6\ C-4\ C - T)的空 间构象更适合受体蛋白,因此这两种蔗糖衍生物的甜度比蔗糖强。
此外,AH、B、X甜味理论的应用也有助于人们对“相对甜味值”的更好 理解。“相对甜味值”的突出优点是,它将所有甜味物质的全部甜味特性和一种 标准甜味物质(通常是蔗糖)联系起来,并用一个具体的数值来表示,从而大 大简化了对各种甜味剂的联系和比较。但值得注意的是,由于一个甜味剂的所有 味觉属性被简单地组合成一个单独的“相对甜味值”来表示,也造成了其甜味 本质与“相对甜味值”之间存在一定的差异。
安赛蜜是白色结晶状粉末,结晶为斜晶型。X光衍射试验证明其环结构是在 —个平面上的,但单原子间的距离小于理论值。位于C = C平面上的N和S原子 与相邻原子之间的距离分别为0.0125rm)和0.0433nm,N、S之间的距离要比正 常的单键距离短。安赛密的密度是 1.83g/cm\容积密度在丨.1?1.3kg/dm3之 间。它没宥明确的熔点,在通常测定熔点的 条件下,缓慢加热时约在225尤左右可观察 到有分解现象。其分解点决定于加热的速度,
除了对二氢氧氮水环二氧化物环上不同取代产物进行研究外,人们还合成r 结构类似的化合物以观察环上的变化对其甜味的影响悄况,但没发现其他任何新
甘.赖?笨丙?丙.鳜.天冬?谷.谷?天冬酰胺.纊?异亮?甘.谷氨酰胺.酩?甘.挤 ?亮.苏.苯丙?天冬胺.賴?纗.异亮?铕? .半lit.蛋?賴.輳.(家?异亮.酤. 谷_天冬酰胺?I

展开阅读全文
本站部分文章来自网络,不代表立场及观点,转载请注明出处,如有侵权请联系即删除。 广告合作事宜,请联系:133 2802 0789(微信同号)

你也可能喜欢

评论已经被关闭。

插入图片
微信 微信
微信
电话 电话
13328020789
返回顶部