正宁县甜蜜素
上述类似物在水溶液中的构象也是只有L-型 和延展塑两种。除图2-92 (1)外,其他三种的所有构象中以L-型最为稳定。 最有意思的是,从上述四种类似物的L-型构象可以发现一个明显的规律:图
(CH,),N ? SO, + C6HnNH, 60 ~7°^ >C6HnNHSOjH ? N (CH,〉3 C6HnNHS03H ? N (CHj), +NaOH ~?QH,,NHS03Na + (CH3),N + H20
(六)甜味增效作用
,(被占用受体的_
用弱酸在惰性溶剂中将4-PAS进行异构化,4位的乙酰基转移至6位,得 到较纯净的2, 3,6,3',4'-五乙酸蔗糖酯(6-PAS),理论得率为75%。弱 酸最好选用羧酸,尤其是诸如乙酸之类的脂肪族羟酸。为了缩短反应时间,必须 升高反应温度,试验表明适宜温度为80~15(TC,最佳温度lOO-UOt,反应 2~4h0故惰性溶剂的沸点应为丨00?丨40弋,且可溶解蔗糖五乙酸酯,如甲基异 丁基酮的沸点为lire。高温条件下羟酸生成自由H +可促进迁移反应,其反应 机制推测如图3-17所示。
Unilever已成功地生产出嗦吗甜II及嗦吗甜分子的前体化合物,这一杰出成 就是通过多年的努力,应用遗传工程方面的最新知识完成的。有两篇专利文献对 这种生产方法做T相当详细的描述。其中一篇描述的娃利用重组DNA技术把植 物基因的遗传信息引人大肠杆菌{Escherichia coli)细菌寄主细胞内,将“设计 好”的DNA适时移人细菌体内就可生成嗦吗甜蛋白。第?.篇描述的是重组[)NA 分子的结构,它可产出嗦吗甜分子的前体化合物。嗦吗甜D分子的氨基末端有额 外的22个氨基酸,羧基末端也冇额外的6个氨基酸。这种伸长的分子有助于微 生物细胞更易排出蛋白质,因此增加了应用时的经济效益。遗传工程的另一个任 务就是通过基W突变使嗦吗甜分子发生特种变异,以观察其对产品甜度及其他特 性的影响。然而,就H前来说,要把这些实验成果转变成商收化规模生产尚冇不 少困难。另一种适合用来生产嗦吗甜的寄主是酵母或其他无毒性的发酵微生物, 因酵母的食用历史很长,对有关管理部门以及最终消费齐来说吸引力更大些。
阁4 - 13所示为甜菊苷和挤压膨胀淀粉比为0.4:1.0,挤压膨胀淀粉浓度对 转葡糖基得率及环糊精浓度的影响。挤压膨胀淀粉浓度>75g/L,甜菊苷转葡糖 基得率基本保持恒定,>100g/L时得率显著下降。在挤压膨胀淀粉浓度<75g/L 时,环糊精随浓度增加而增加,但当淀粉浓度继续升高时,基本保持不变。
这意味着曲线没有平稳区域。因此,有序不可逆历程(图1-26机理3) 似乎最能解释心物学研究得到的各种数据。主观强度(汾)与浓度关系曲线具有 伸长的最大强度平稳区域(图1-27),它证实上面提出的这个结论的正确性, 这条曲线与机理2有些出入。